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Nonconservation forms of the equations of shallow water theory are solved by an extension 
of the Random Choice Method. The nonconservation Riemann problem is analyzed in terms 
of two nonlinearly interacting waves and is solved by means of a numerical integration aiong 
characteristic curves. Numerical results for the dam-failure problem in Cartesian and cylin- 
drical coordinates are presented. The results are shown to be satisfactory. The Random 
Choice Method has the advantage of describing the breakdown of discontinuities in shallow 
water theory without need of ad hoc techniques and without introducing numerical diffusion 
and dispersion. 

1. INTRODUCTION 

In a previous work [9] the Random Choice Method (RCM) was applied to the 
numerical solution of a homogeneous hyperbolic system of conservation laws in one 
dimensional shallow water theory. In the present work we extend the method to 
include nonconservation forms of the shallow water equations, i.e., i~homogeneous 
systems such as those resulting from the consideration of friction effects or radial 
flows. A brief version of this work was presented in [ 101. 

In the RCM the solution of the equations is constructed as a superposition of local 
theoretical solutions of Riemann problems and sampling techniques. This method was 
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introduced by Glimm [ 71 and developed for gas dynamics by Chorin [2-4]. Sod [ 141 
extended the RCM to a nonconservation form in gas dynamics. 

The RCM is particularly efficient for the treatment of discontinuities that arise 
naturally in the solution of nonlinear hyperbolic equations (see, for instance, Lax 
[8]). The main problem in the application of the RCM resides in the solution of the 
Riemann problem. This becomes even more complex when inhomogeneous terms are 
present. Sod [ 141 avoided this difficulty by using a splitting technique consisting in a 
two-step procedure. In the first step the inhomogeneous term is removed and the 
resulting conservation form system is solved by the RCM. That is, first, the Riemann 
problem for the homogeneous system is solved, and then this solution is sampled. In 
the second step a system of ordinary differential equations is solved in a deterministic 
way by finite differences using as initial conditions the solution obtained in the first 
step. Later, Sod [ 151 recognizes that randomness should be introduced in the second 
step in order to obtain a solution which is in phase with the one obtained in the first 
step. 

In the present work, following the tradition of Glimm’s method, we first approx- 
imate the solution locally by solving Riemann problems for the inhomogeneous 
system using a numerical method to integrate the characteristic curves; then this 
solution is sampled. In this way there is no out-of-phase problem. 

The solution of the Riemann problem for the shallow water equations is studied 
through the superposition of the two nonlinearly interacting scalar waves stemming 
from the shallow water system written in characteristic form. This original approach 
illuminates and simplifies the analysis of wave interactions. 

The paper is organized as follows: (a) the main features of nonconservation forms 
and the procedures for their numerical solution are introduced with a simple 
inhomogeneous scalar wave equation; (b) a simplified linear homogeneous shallow 
water system is presented in order to illustrate the above-mentioned superposition 
technique; (c) the one dimensional shallow water system with slope and/or friction 
terms is considered and, finally, (d) the shallow water equations for radially 
symmetric flows are studied. 

Numerical results are presented for: (1) a nonlinear scalar wave equation with a 
friction-like term; (2) the dam-failure problem, taking into account friction and slope 
effects; and (3) the problem of dam failure in a contracting channel section, 
considered as an example of a radial flow. 

2. THE SCALAR WAVE EQUATION 

A simple example of a nonconservation form is provided by the following scalar 
wave equation: 

U, + F(U), + G(U) = 0, (1) 
where F(U) is a flux density, G(U) is a sink term, U is a scalar quantity and x and t 



SHALLOW WATER THEORY 169 

FIG. 1. Solution of the nonconservation Riemann problem for Eq. (I), case (a). 

are the space and time coordinates. The initial conditions for the ~onco~serv~t~~~ 
Riemann problem are given by 

U(x, 0) = f(x) = u, 

= UF 

for x < 0, 

for x > 0, 

where U, and 0; are constants. 
The main features of a nonconservation form appear in the following simple cases 

which we consider: 

(a) R’(U) = aU and G(U) = b, a and b positive constants. 

The solution of Eq. (1) with initial condition (2) is then 

U(x, t) = f(x - at) - bt, 

which is illustrated in Fig. 1. The wave propagates along characteristic lines with 
slope l/a, its value diminishing linearly due to the presence of the sink term. 

(b) F(U) = aU and G(U) = bU, a and b positive constants. 

The solution of Eqs. (l), (2) is now 

U(x, t) = j-(x - at) e --bf, (41 

as shown in Fig. 2. The wave propagates along characteristic lines with slope l/a, its 
value diminishing exponentially due to the presence of the sink (or friction like) term. 

(c) F(U) = U2/2 and G(U) = bU, b a positive constant. 

Equation (1) can be written now in characteristic form as 

dU/dt = -bU if dx/dt = U. (5) 
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FIG. 2. Solution of the nonconservation Riemann problem for Eq. (I), case (b). 

The solution of Eq. (5) along characteristic lines could be written as 

U(~,[)=f(X-lUdl)e-~’ along x-/Udt=const. ’ (6) 

Expressions (5) and (6) indicate that in the smooth part of the flow, an initial 
condition will propagate along characteristic curves with slope l/u, its value 
decreasing exponentially due to the friction term. 

As a result of the nonlinear character of Eq. (l), any initial discontinuity will 
break down into a simple centered wave. For the initial condition (2), if U, < U,, the 
centered wave is a rarefaction wave, and if U, > U,, the centered wave is a shock 
with velocity 

s = 1/2(U, -t U,) eCbt, (7) 

by the Rankine-Hugoniot condition [8]. Both cases are illustrated in Fig. 3. 
In the following the numerical procedure used to integrate the shallow water 

system is introduced by means of its application to the scalar wave equation for 
case (c). Since the RCM is first order accurate, the integration of Eq. (5) can be 
approximated by 

U(x(At), At) = (1 - b At) U, + O(AP), (84 

x(At) = x(0) + U,At + O(At’), (8b) 

where U, = U(x(O), 0) Equation (8a) shows that making At = 0 is equivalent to 
making b = 0, thus U,, coincides with the known solution for b = 0. This is to say 
that the breakdown of an initial discontinuity is independent of the friction term. 
Therefore, the characteristic curves for b = 0 and b # 0 are tangent to each other 
when t = 0 (see Fig. 4). Equation (8b) shows that the curvature of the characteristic 
curves for b # 0 can be neglected to first order in At so that the two characteristic 
families (for b = 0 and b # 0) are coincident. From the foregoing, the solution for 
t = At can be calculated for any desired value of x. 
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FIG. 3. Solution of the nonconservation Riemann problem for Eq. (I), case (c). 
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FIG. 4. Characteristic curves for Eq. (l), case (c) 
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For sampling the Riemann solution we have used the binary van der Corput 
equidistributed quasi-random sampling procedure proposed by Collela. For a 
discussion of the merits of this procedure see [5]. 

It is worth noting that for the case of the inhomogeneous scalar wave equation, the 
method described is in fact equivalent to that of Sod [ 15 1. This is no longer true for 
the shallow water system. 

It can be proved that the extended RCM here introduced is convergent when 
applied to a linear inhomogeneous scalar wave equation. Chorin [4] demonstrated the 
convergence of the RCM for the case of the linear scalar wave equation with initial 
discontinuous conditions. That demonstration is also valid for a linear 
inhomogeneous scalar wave equation because the inhomogeneous term has no 
influence on the slope of the characteristics, which remain straight lines. Therefore, 
the expected value of the position of the discontinuity of the approximate solution 
coincides with the theoretical value, and the variance of the position tends to zero as 
the mesh size is refined. However, the inhomogeneous term affects the value of the 
solution. Its influence is calculated through a numerical integration procedure which 
converges to the theoretical solution when the mesh is refined. 

Figure 5 shows the numerical solution by the RCM of Eq. (I), case (c), for the 

FIG. 5. Solution of Eq. (I), case (c) by the RCM. 
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trajectory of a shock moving to the right. The solution for different values of b is 
compared with the theoretical solution given in Eq. (7). There is good agreement 
except for the largest value of b, but since the solution is a function of the product 
bdt, it can be improved by decreasing At. This is done in Fig. 5, where, by halving 

, an excellent result is obtained for the largest value of 13. 

3. A SIMPLIFIED SHALLQW WATER SYSTEM 

A simp!e linear model of the shallow water system is given by expression (I), 
where now 

h u= ; L 1 u 
with h and u being scalar quantities and C a positive constant. System (l)-(9) written 
in characteristic form becomes 

$(I! + U)=O if -f$= C, 

&h-u)=0 if p=-C. 

There are two families of characteristic lines with slope nC. Along each of them the 
quantities Y = h + u and s = h - u are constant, respectively; r and s are called 
Riemann invariants. System (lOa), (lob) can be written in tbe alternative form 

where I is the identity matrix, and 

1 and (12) 

System (ll), (12) can be interpreted as the equations for two independent scalar 
waves: the ‘Y’ and the 7s” waves. Therefore it is useful to examine system (I)--(!?) 
studying the superposition of the r and s waves of system (I I), (12). The initial 
conditions for the Riemann problem are given by 

H,(x) 
for x < 0, 

W(x, 0) = 
[ I ff&) = for x > 0. 
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I 
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FIG. 6a-6d. Solution of the Riemann problem for Eqs. (1 l), (12). 

The solution of Eqs. (1 l), (12) with initial conditions (13) is 

(14) 

as illustrated in Figs. 6a and b. The r wave propagates unchanged along charac- 
teristic lines with slope l/C, while the s wave propagates unchanged along charac- 
teristic lines with slope -l/C. 

We can now solve for the variables h and u by superposing the r and the s waves, 
We obtain (Figs. 6c and d), 

h(x, t)=F= 1/2[H,(x - Ct) + H*(X + Ct)] (15) 
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I 
h(x,t) 

c) h 

d) u 

FIG. 6-Continued. 

u(x, f)=T= 1/2[H,(x - Cr)- f&(X + et)]. 

This procedure will be applied in the solution of the shallow water system. 

4. THE SHALLOW WATER SYSTEM 

The one dimensional shallow water system is given by expression (I$, where 

(16) 

U= and WV= 
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Here u is the water velocity, h is the depth, g is the gravity and R(U) is a friction 
term and/or a slope term. System (l)-( 17) can be written in characteristic form as 
(see Stoker [16]) 

$ [u + 2(ghy2] = R(U) if $-= 24 + (g/z)‘/‘, 

$[u--2(gh)“‘)=R(U) if -$=zf-(g/~)*‘~. 

As in the case of the inhomogeneous scalar wave equation, the breakdown of an 
initial discontinuity in the shallow water system is independent of the effect of the 
friction terms (see Dressler [6]). Therefore, the breakdown process is analyzed by 
applying the superposition procedure of Section 3 to the homogeneous shallow water 
system. Equations (18a), (18b) for R(U) = 0 indicate that the quantities 
r, s = u f 2(gh)“’ are constant along characteristic lines with slope u f (gh)‘j2, 
respectively; r and s are the corresponding Riemann invariants. System (18a), (18b) 
for R(U) = 0 can be written as 

dW 
0 

dx 
-z= 

if Iz=A, 

where I is the identity matrix, and 

and (3r+W 0 
0 1 (r+ 3s)/4 * 

(19) 

Next the shallow water system (l)--( 17) for R(U) = 0 is analyzed by superposing 
the r and s scalar waves of system (19), (20). The initial conditions for the Riemann 
problem are given by 

I 

w,= rl 
[ I 

for x < 0, 
W(x, 0) = $1 

w, = rr [ 1 for x > 0, 
sr 

and we distinguish the following cases (see Fig. 7): 

(0 r, < rr and s1 = s,. 
In this case a right r depression wave is obtained, while s remains constant; 

(ii) rl = r, and s1 < s,. 
In this case a left s depression wave is obtained, while r remains constant; 

(iii) rl < rr and s, < s,. 
In this case both a right r and a left s depression wave are obtained. 

(21) 
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‘ i ’ rr 
IV) 

sl-sr:M(VW 

FIG. 7. Solution of the Riemann problem for the r and s waves when R(U) = 0. 

Zn these three cases, one wave influences the other by producing a constant 
contribution to the velocity of propagation. 

(iv) r1 > Y, and s, - s, = M(r, - r,.), where 

Statement (22) verifies that 0 < A4 < I, with M = 0 for x = y (this equation is 
obtained from the Rankine-Hugoniot relations [IZ]). In this case a right r shock and 
a right s shock wave are obtained. 

(v) s1 > s, and rI - rr = M(s, - sr). 
In this case a left s shock and a left Y shock wave are obtained. 

(vi) ri > Y, and s, - s, < M(r, - I-,). 
In this case a right r shock wave and an s wave composed of a left depression and a 
right shock wave are obtained. The right s shock -appears even in the case s, = s, as a 
result of nonlinear interaction with the I wave. 
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(vii) s1 > S, and ri - r,. < M(s, - s,). 
In this case a left s shock wave and an r wave composed of a right depression and a 
left shock wave are obtained; 

(viii) rl -,rr > M(s, - s,) and s, - s, > M(r, - r,.). 
In this case left and right r and s shock waves are obtained. 

The intermediate states r* and s* appearing in cases (vi), (vii) and (viii) as a result 
of the nonlinear interaction must be calculated through an iteration procedu61 5.72d5 3  Tr -00.2763  Tc 0.164a66  Tc -0.0092  Tw i  TD 3  TriTw (calculated ) Ta6iteration 

Godunov iteration; see, for instance [ 121). 
The solutions for the variables u and h corresponding to the cases considered 

above are shown in Fig. 8. Here h, = 

(rl - s,)*/( 16g), U, = (rl + s,)/2, h, = (r, - s,)~/ 

(16g) and U, = (r, + s,)/2. The foregoing analysis is the basis for the solution of the 
Riemann problem for the inhomogeneous shallow water system. 

Equations (18a), (18b) for the general case R(U) # 0 can be written in the 
alternate form 

case height h velocity u 1 

ii 

h, /-, u, rur 

FIG. 8. Solution of the Riemann problem for the variables h and u when R(U) = 0. 

(23) 
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FIG. 9. Characteristic curves foor case (i). 

where W and A are given in (20) and 

In spite of not being Riemann invariants, the quantities P and s can still be 
interpreted as two nonlinearly interacting scalar waves, the superposition of which 
gives the solution for the variables u and h. 

The nonconservation Riemann problem posed in Eqs. (18)-(21) is solved by 
integrating along characteristic curves, taking into consideration that since the 
is first order accurate, the characteristic curves for each wave coincide with the 
corresponding curves for R(U(W)) = 0. The integration process is different for each 
one of the eight cases analyzed above. We give the details of this procedure. 

Case (i) rl < rr and s1 = s,. For this case the characteristic curves for each wave 
are shown in Fig. 9. Four regions can be distinguished: 

(1) x < (P-1 + 3s,) dt/4. 
The integration of Eqs. (20)-(23), (24) for W gives 

r(x, At) = rl + R 1 At + Q(At’), (=a) 

s(x, At) = s1 + R, At + O(At’), (25b) 

where R, = R(U(W,)). Thus, in this region, it follows from Eqs. (25a), (25b) and 
from definitions of r and s that 
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u(x, At) = u1 + R, At + U(At’), 

h(x, At) = h, -t O(At*). 

(2) x > (3r, + s,) At/4. 
In this region, considerations similar to those just given lead to 

u(x, At) = u, + R, At + O(At’), (274 
h(x, At) = h, + O(At*), (27b) 

where R, = R(U[W,)). 

(3) Q-1 + 3s,) At/4 < x < (3r, + SJ k/4. 
In this region the integration of Eqs. (20~(23), (24) for W yields 

(2W 
Wb) 

r(x, At) = r1 + R, At + O(At2), 

s(x, At) = s, + R, At + O(At2), 

(284 

(28b) 

so that 

u(x, At) = u1 + (R, + RJ2 At + @At*), 

c(x, At) = cl + (R, - R,)/4 At + O(At2), 

(294 

(29b) 

where c = (gh)“‘. 

(4) (3r, + sJ At/4 < x < (3r, + s,) At/4. 
In this region the integration for the s wave is the same as before; i.e., it is given by 
Eq. (28b), but the integration for the r wave yields 

where 

Y(X, At) = r, + R, At + O(At2), (30) 

Ro = WWo)), (31) 

Here r. represents the centered depression wave for R(U(W)) = 0. It now follows 
from Eqs. (30)-(31) that, in this region, 

u(x, At) = u. t (R. + R,)/2 At + @At*), 

c(x, At) = co f (R, - R,)/4 At + O(At2), 

(324 

(32b) 

where u. = (r, + s,)/2 and co = (r. - s,)/4. 

Cases (ii) and (iii) can be treated in a manner similar to that for case (i). 
Case (iv) rl > rr and s1 - s, = M(r, - r,). In this case the characteristic curve for 

each wave are shown in Fig. 10. We study case (iv) in three regions separately: 
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(1) x < (r-1 e 3s,)dt/4. 
In this region the solution is the same as in case (i); i.e., it is given by Eqs. (2&j, 
(26b). 

(2) x > GAt, where 

U= 24, + 1/4(r, - sJ(r, - sr){ 1/2f(r, - sl)* + (rr - s,)2]]1’2 (33) 

is the velocity of propagation of the shock for R(U( IV)) = 0 (this follows fro the 
Rankine-Hugoniot relations). In this region the solution is analogous to the soiution 
in region 2 of case (i); i.e., it is given by Eqs. (27a), (27b). 

(3) (rl + 357,) At/4 < x < i7 At. 
In this region the integration of the r wave is the same as for region 3 of case (i); Le., 
it is given by Eq. (28a), but the integration of the s wave must be divided into two 
parts due to the discontinuity present in the shock trajectory. For the s wave (see 
Fig. lo>, 

s(x,At)=s,+R,(At-At,), (34a) 

s,=s,+R,At,, (34b) 

where the subindexes A and B denote values just to the left and to the right of the 
shock trajectory, respectively. The relation between s, and sg is given by 

sA -s, = (K, - l)/(K, + l)(rA - r,). (34c) 

I i ’ 

FIG. 10. Characteristic curves for case (iv). 
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Here K, = K(rA - s, , r -s,) and rA and r, must be calculated by integration. For B 
r, and r, we have 

rA=rl+RIAtA, (344 

r, = r,. + R, AtA, 

where AtA can be computed directly from 

(344 

At 
A 

= “_- (r* + 3s,)At/4 
U - (rl + 38,) At/4 ’ 

Wf) 

Equations (34a)-(34c) with three unknowns (s(x, At), s,, sB) can be solved in O(At) 
to obtain s(x, At). The result is 

s(x,At)=s,+R,(At-At,)+aAt,, (35) 

where 

a= R,+(K,-l)l(K,+l)(R,-R,)+2~,l(K~--Z)(s,-s,)R, 
1 + 2K,/(K; - l)(S* -S,) 

with 

go = g (rl - s, , rr - s,). 

From Eqs. (28a) and (35) it follows that 

U(X, At> = u, + [R,(2At - At,) -I- a At,]/2, (364 

C(X, At) = cl + (R, AtA - a AtA)/4. (36b) 

Case (v) can be treated in a manner similar to that for case (iv), while cases (vi) 
and (vii) are combinations of previous cases. Case (viii) is somewhat different. In 
case (viii), both the integration of the r and s waves in the central region must be 
divided into two parts, and a process of reflection of information occurs between the 
two shock trajectories. This leads to an infinite sequence of equations that 
successively introduce new unknowns corresponding to points which approach zero. 
For calculation purposes this sequence can be truncated when the points are within a 
time interval O(At*) from the origin, assigning to these latter points the values of the 
known solution for R(U(W)) = 0. 

The sampling technique for the Riemann solution is the same as for the scalar 
wave equation. Moreover the extended RCM so far discussed is convergent when 
applied to a linear inhomogeneous shallow water system. In effect, if the linear 
inhomogeneous shallow water system is analyzed in terms of the corresponding r and 
s waves, the proof is the same as in the scalar case. 
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Numerical solutions for the shallow water system obtained with the RCM are now 
shown. In Fig. 11 the results for the dam-failure problem with friction effects are 
presented, together with the theoretical solutions for the case without friction. The 
initial conditions are: h = 10 m, u = 0 for x < 0 and h = 2 m, u = 0 for x > 
friction term is given by R(U) = -gu2/(C2h), where C = 52 ml”/sec. is the 
coefficient. It can be seen that the friction effects are initialiy concentrated in the 
shock region, damping and decelerating the shock; for larger times these effects 
spread upstream, so the heights increase (and the velocities decrease). 

In Fig. I2 the results for the dam-failure problem with a constant bottom slope and 
without friction are shown. The initial conditions are the same as in the previous 
example and the slope term is given by R(U) = gS,, where S, = 0.0004 is the bottom 
slope. It can be observed that the velocities, including the shock velocity, increase 
uniformly and constantly due to the slope influence, while the heights remain 
unchanged. 

In Fig. I3 a comparison is made with the numerical results obtained by Sakkas 
and Strelkoff [ 131 by the method of characteristics, for the case of the 
flood on a dry horizontal bed. The initial conditions are h = 0.11 m, u = 
As our algorithm cannot deal with a zero height, we have taken h = 10-j m, u = 0 

x > 0. The friction term is given by R(U) = -gnzu2/h4’3, where n = 0.0166 
anning coefficient. Although these are the least favorabie conditions for the 

the heights and velocities calculated by the RCM are in good agreement with those 
obtained by Sakkas and Strelkoff [13]. 

In Fig. 14 a comparison is made with the numerical results obtained by 

1 Numerical Solution 1 

10 
H(m) 

1 
-2 0 2 4 X (kini 

FIG. 1 I. The dam-failure problem with friction effects as calculated with the RCM. 
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for the dam-failure problem with friction and slope effects using finite differences on 
the characteristic equations. The initial conditions are h = 1.8 m, u = 1.6 m/set for 
x > 0, and h and u are as given by Re [ 111 for x < 0. The inhomogeneous term is 
given by R(U) = g[S, - z.2/(C2h)], where 5, = 0.0009 and C = 40 m’12/sec. It is 
observed that the results obtained with the RCM are very close to those given by 
RC [II]. 

The agreement shown between the results of the RCM and those of the charac- 
teristic finite difference method (another method well-suited for treating discon- 

IO 

H (m) 

Numerical Solution 

0 2 X(kmI 

FIG. 12. The dam-failure problem with slope effects as calculated with the RCM. 



SHALLOW WATER THEORY IX5 

tinuities), evidences a similar degree of accuracy. The advantages of the R@ 
that there is no need for a separate treatment of discontinuities and one capl 
fixed rectangular mesh. Furthermore, the RCM ~utornat~c~~~y accounts for the 
spontaneous formation of shocks without introducing numerical diffusion and 
dispersion. 

The numerical calculations and figures presented above were made in a P 11145 

-Sakkas-StreIkofi 

-300 -200 -100 0 100 L 

ho 

FIG. 13. Comparison of results for the dam break flood on a dry bed. 
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digital equipment (48K bytes, Fortran compiler), with a plotting device. All the runs 
were made with a mesh of 51 points. The CPU time per cycle was estimated at 
2.4 sec. 

7.7 

Ii(m) 

X(Km) 

FIG. 14. Comparison of results for the dam failure with friction and slope. 

5. RADIAL SHALLOW WATER FLOW 

The one dimensional shallow water system for cylindrically symmetric shallow 
water flows without friction and slope terms is given by expression (1) (see Abbott 
[ 1 I), where now x is the cylindrical radial coordinate, and 

and 

System (l)-(37) can be written in the alternate form 

z$H(W) if Is=A, (38) 

where W and A are given in expression (20), and 

WV= -R(u) 
i 1 R(U) ’ 

R(U)= (~+m(r--s>l”* 
4x . (39) 

The nonconservation Riemann problem for the r and s waves is given by expressions 
(38~(21). As the numerical integration process along characteristic curves does not 
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10 
Ii(m) 

1 
-4 -2 0 2 

x(km) 

FE. 15. The dam break wave through a contracting channel section, as calculated by the RCM. 

differ essentially from the previous one dimensional shallow water problem, it is not 
examined here. 

In practice the flow through an expanding or contracting channel section could be 
analyzed as a radial flow. In Fig. 15 the result for the dam break wave tbro~~~ a 
contracting channel section is shown, together with the theoretical solution for the 
case of one dimensional motion. The initial conditions are: h = 2 m, u = 0 for x < 0 
and h = 10 m, u = 0 for x > 0. The flow converges toward the paint located at the 
extreme left of the figure. It can be observed that due to the radial movements the 
heights and velocities increase. 

6. CONCLUSIONS 

The range of application of the RCM has been extended to include nonconser- 
vation forms of the equations of shallow water theory. Moreover the rlo~conser~~t~o~ 
Riemann problem has been analyzed with a method based on the superposition of 
two scalar wave equations. This approach clarifies the complex nonlinear process 
inherent in the shallow water system. The solution of the nonconservation ie~~~~ 
problem is obtained by means of a numerical integration along characteristic curves. 

Numerical solutions for the dam-failure problem in Cartesian and cylindrical coor- 
dinates are also presented. The significant effects of the i~homogeneo~s terms are 
evidenced by the difference between the homogeneous and inhomogeneous solutions. 

The accuracy of the RCM has been assessed by comparing its results with those 
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obtained by characteristic finite difference methods. The RCM describes the wave 
interaction of shallow water theory with no need of ad hoc techniques and without 
introducing numerical diffusion and dispersion. The relative complexity of the RCM 
is more than balanced by its power of resolution for treating discontinuities and its 
unconditional stability which allows for a much coarser mesh size at the same level 
of accuracy. 

The extension of the RCM to nonconservation forms of the equations of shallow 
water theory renders possible its application to a great variety of problems of prac- 
tical interest, opening a wide avenue of research, not only in hydraulics, but also in 
meteorology, oceanography, and geophysical fluid dynamics in general. 
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